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Abstract

A repetitive pin-jointed, pre-twisted structure is analysed using a state variable transfer matrix technique. Within a
global coordinate system the transfer matrix is periodic, but introduction of a local coordinate system rotating with
nodal cross-sections results in an autonomous transfer matrix for this Floquet system. Eigenanalysis reveals four real
unity eigenvalues, indicating tension–torsion coupling, and equivalent continuum properties such as Poisson�s ratio,
cross-sectional area, torsion constant and the tension–torsion coupling coefficient are determined. A variety of real
and complex near diagonal Jordan decompositions are possible for the multiple (eight) complex unity eigenvalues
and these are discussed in some detail. Analysis of the associated principal vectors shows that a bending moment pro-
duces curvature in the plane of the moment, together with shear deformation in the perpendicular plane, but no bend-
ing–bending coupling; the choice of a structure having an equilateral triangular cross-section is thought responsible for
this unexpected behaviour, as the equivalent continuum second moments of area are equal about all cross-sectional
axes. In addition, an asymmetric stiffness matrix is obtained for bending moment and shearing force coupling, and pos-
sible causes are discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Repetitive (or periodic) structures are analysed most efficiently when that periodicity is taken into ac-
count. It is possible to determine the behaviour of the complete structure from analysis of a single repeating
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Nomenclature

A cross-sectional area
d member diameter
d nodal displacement vector
E Young�s modulus
F force vector
G, G shear modulus, transfer matrix
H height of cell cross-section (H ¼

ffiffiffi
3
p

L=2)
i, I, I

ffiffiffiffiffiffiffi
�1
p

, second moment of area, identity matrix
J, J, Jm torsion constant, Jordan block and canonical form, metric
K, K stiffness matrix, coupling coefficient
L length of cell, and of cross-sectional members, left
M bending or twisting moment
n, N, N index of cell or section, compliance matrix
p period
Q shearing force
R radius of bending curvature, right
s state vector
T tensile force
T orthogonal coordinate transformation matrix
u, v, w displacements in the x-, y- and z-directions
v eigenvector
V similarity/transformation matrix of eigen- and principal (generalised) vectors
w principal vector
x, y, z global Cartesian coordinate system at the zeroth nodal location
a pre-twist angle per cell
c shear angle
e direct strain
h (torsional) rotation about the x-axis
j shear coefficient
k decay factor, eigenvalue
m Poisson�s ratio
w cross-sectional rotation
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cell, together with knowledge of the boundary conditions. Straight (prismatic) repetitive one-dimensional
(beam-like) structures have previously been analysed by Stephen and Wang (1996) as an eigenproblem
for a state vector transfer matrix. The state vectors sL and sR consist of the nodal displacement and force
components on the left- and right-hand sides, respectively, of the single cell of the repetitive structure, while
the transfer matrix G is obtained through manipulation of the single cell stiffness matrix, K. Non-unity
eigenvalues of G occur as reciprocals, and describe the rate of decay of self-equilibrated end loading, as
anticipated by Saint-Venant�s principle. Multiple unity eigenvalues pertain to the transmission modes of
tension, torsion, bending moment and shear, together with the rigid body displacements and rotations.
From knowledge of the eigen- and principal vectors associated with the unity eigenvalues, equivalent con-
tinuum beam properties of cross-sectional area, Poisson�s ratio, second moment of area, torsion constant
and shear coefficient were calculated. The present paper extends this approach to pin-jointed structures
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having a pre-twisted form. Each cell has a constant angle of pre-twist, taken to be an integer fraction of 2p,
so that one has a spatial, rather than the more usual temporal, periodic Floquet system.

For continuum structures, pre-twist produces tension–torsion and bending–bending couplings, and has
been studied widely (see the review by Rosen (1991) citing over 200 references) because of the importance of
the engineering applications, ranging from turbine blades and propellers, to architectural columns. It is easy
to visualise that a pre-twisted beam will increase in length if a twisting moment is applied in a direction
tending to decrease the pre-twist angle; equivalently, a tensile force will produce both an extension and
a reduction in pre-twist angle. Bending–bending coupling is not so easy to visualise: consider a straight
beam, such as a metal ruler, for which the bending stiffness� in the two principal planes are quite unequal;
if subject to excessive compressive load, buckling would favour deflection in the flexible plane. Suppose,
now, that this beam has a total uniform pre-twist through 90�, and that a bending moment is applied at
one end (left-hand, say) in the flexible plane at that end; at the right-hand end, the moment is in the stiff
plane. Thus at the two ends, there would be curvature in just one plane; bending deflection would again
favour the flexible plane, and be much greater at the left-hand end. The above is easy to visualise: less
so, is the behaviour at locations between the two ends. If there is a coupled bending curvature perpendicular
to that of the applied bending moment, then clearly its magnitude must vary from zero to zero over the 90 �
twist of the beam; in turn, there are two obvious possibilities: either that it depends on double the pre-twist
angle in a sinusoidal form, or that it remains zero throughout. Existing theories are based on the former;
however the example pre-twisted structure considered in the present paper does not exhibit such bending–
bending coupling, presumably because the chosen equilateral triangular cross-section has equal equivalent
continuum second moments of area about all cross-sectional axes. On the other hand, the example structure
does exhibit a bending-shear coupling, which is not included in the majority of such theories.

Previous research on continuum pre-twisted structures may be classified as within the spirit of Strength

of Materials, or the more exact three-dimensional Theory of Elasticity. The former is based largely upon the
so-called helical fibre assumption first introduced by Chen (1951),1 in which the longitudinal stress in the bar
cross-section is not parallel to the axis, but acts in the direction of the longitudinal spiral fibres of the pre-
twisted bar. The typical approach of the latter, see for example Okubo (1951, 1953, 1954), Goodier and
Griffin (1969), Shield (1982), Krenk (1983a,b), Pucci and Risitano (1996) and Guglielmino and Saccomandi
(1996), is the introduction of a local coordinate system, which rotates with the principal axes of the cross-
section, into the governing differential equations for stress describing force equilibrium, or the equivalent
(Navier) equations for displacements; while the equilibrium equations become more complicated, the
advantage is that the traction-free boundary condition becomes independent of the axial coordinate. In
the present work, the introduction of a local coordinate system rotating with the cross-section leads to a
transfer matrix which is autonomous, that is, independent of location; one now has translational symmetry,
allowing eigenanalysis.

The paper is laid out as follows: in Section 2, we describe the example structure; a pin-jointed framework
was chosen so that predictions from the present approach could be verified by comparison with exact finite
element analysis (FEA). In Section 3, the transfer matrix approach is outlined for a straight structure, the
necessary modifications for a pre-twisted structure and the relationship with Floquet theory are noted.
Coordinate transformations leading to the autonomous transfer matrix are developed, and its symplectic
properties noted. In Section 4, eigenanalysis of the autonomous transfer matrix is performed, and the vari-
ety of possible real and complex Jordan block decompositions introduced and discussed; apart from some
example-specific decay eigenvalues, the analysis is applicable to any repetitive pre-twisted structure. Section
5 describes the coupling of eigen- and principal vectors according to the real Jordan block forms, from
which the example-specific equivalent continuum beam properties are determined. Conclusions are drawn
1 In the literature, Chen Chu is most often referred to according to his given name, Chu.
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in Section 6, and the transformation matrix leading to the real Jordan block form, and modified shear vec-
tors are presented in Appendices A and B.
2. Example structure

We consider a pin-jointed beam-like framework whose cross-section is in the form of an equilateral tri-
angle of side length L = 0.3428 m. The zeroth nodal cross-section is assumed to align with a global x y z

coordinate system (x is the axial direction), Fig. 1(a), while the adjacent n = 1 nodal cross-section, Fig.
1(b), is pre-twisted through angle a radians, here taken as a = p/8; also shown is a local coordinate system
x 0 y 0 z 0 which rotates with the cross-section. The axial length of the cell is also taken to be L = 0.3428 m.
Individual members of the cell are of aluminium, having Young�s modulus E = 70 · 109 N/m2 and diameter
d = 6.35 mm. The longitudinal (helical) members, together with the two diagonals in each external face of
the cell, have length as demanded by the relevant nodal locations, that is, the pre-twisted structure is free of
any pre-load. The complete first cell of the framework, Fig. 2, is shown in bold.
3. Transfer matrix

For a straight repetitive structure, the stiffness matrix K for a typical cell is first constructed employing
the global coordinate system which is, of course, applicable to all cells; cross-sectional members are re-
garded as being shared by adjacent cells, so are treated as having one-half of their actual stiffness. The stiff-
ness matrix relates nodal force and displacement components as
FL

FR

� �
¼

KLL KLR

KRL KRR

� �
dL

dR

� �
ð1Þ
the transfer matrix G, in global coordinates, is then calculated as
dR

FR

� �
¼ �K�1

LRKLL �K�1
LR

KRL � KRRK�1
LRKLL �KRRK�1

LR

" #
dL

�FL

� �
; ð2Þ
or, more compactly
sR ¼ GsL; ð3Þ
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Fig. 1. Local and global coordinate systems on the left- and right-hand side of the first cell, respectively.
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Fig. 2. A six cell pin-jointed pre-twisted framework; the first cell is shown in bold.
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where the state vectors, and the transfer matrix G, are defined accordingly. In the above, the subscripts L
and R are employed to denote left- and right-hand sides of the cell, while G is the same for all cells; the force
vector within sL requires a minus sign, as the state vectors are defined according to the conventions of the
Theory of Elasticity, rather than FEA. The above is an adequate description for the straight structure,
which possesses translational symmetry, but is inadequate for the pre-twisted structure for which, in global
coordinates, the transfer matrix for each cell within a cycle is different. Instead we write for the first cell,
Fig. 2,
sð1Þ ¼ Gð1Þsð0Þ; ð4Þ

and for the typical nth cell
sðnÞ ¼ GðnÞsðn� 1Þ; ð5Þ

where the state vector subscript has been replaced by an argument, to denote the nodal location, and the
transfer matrix G requires an index to identify the cell.

Assuming that the pre-twist angle a for each cell is constant, then the transfer matrix G(n) is periodic,
with period p = 2p/a, that is
Gðnþ pÞ ¼ GðnÞ; ð6Þ

and for the present example p = 16. For simplicity, suppose that the Nth nodal cross-section aligns with
the global coordinate system; so too will the (N + p)th. Suppose that one constructs a stiffness matrix for
all p cells, and then condense this to form a super-element stiffness matrix Kp relating force and displace-
ment components on the Nth and the (N + p)th nodal locations. Note that the subscript p has been em-
ployed to denote a complete cycle of p cells. From this, one could construct a transfer matrix Gp, using
Eq. (2), which is known as the monodromy matrix; note that Gp ¼ Pp

n¼1GðnÞ. One could then perform
eigenanalysis in the usual way; that is, denoting the state vectors as sp(N) and sp(N + p), respectively,
gives
spðN þ pÞ ¼ GpspðNÞ and spðN þ pÞ ¼ kpspðNÞ ð7Þ

to give the eigenproblem
ðGp � kpIÞspðNÞ ¼ 0. ð8Þ

Denote the square matrix comprised of the eigen- and principal vectors of the above as Vp(N); this trans-

forms the transfer matrix to the Jordan canonical form Jp, according to
VpðNÞ�1
GpVpðNÞ ¼ Jp. ð9Þ
The process described above allows one to treat the pre-twisted beam as if it were straight; however,
state vectors are only defined at those cross-sections that align with the global coordinate system, and
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the information contained within the eigen- and principal vectors describes the behaviour of a complete
cycle of p cells. Such a procedure is exactly how periodic systems are often treated using Floquet theory;
see, for example, Kelley and Peterson (2001). The eigenvalues kp are known as Floquet multipliers, and
define the stability of a (usually dynamic) periodic system which most often is all that is required.

Instead, introduce an autonomous transfer matrix G 0, which is independent of the cell index, n, by
employing a local coordinate system; refer to Fig. 1 for the first cell, and note that the left-hand side aligns
with the global x y z coordinate system. The local right-hand side nodal coordinates transform as
x0

y0

z0

2
64

3
75 ¼

1 0 0

0 cos a sin a

0 � sin a cos a

2
64

3
75

x

y

z

2
64
3
75 ¼ T3

x

y

z

2
64
3
75; ð10Þ
where the 3 · 3 orthogonal transformation matrix T3 is defined accordingly. On the other hand, nodal dis-
placement and force components, referring to node 4 in Fig. 1(b), transform as
F 04x

F 04y

F 04z

2
64

3
75 ¼

1 0 0

0 cos a � sin a

0 sin a cos a

2
64

3
75

F 4x

F 4y

F 4z

2
64

3
75 ¼ TT

3

F 4x

F 4y

F 4z

2
64

3
75 ð11Þ
and
d 04x

d 04y

d 04z

2
64

3
75 ¼

1 0 0

0 cos a � sin a

0 sin a cos a

2
64

3
75

d4x

d4y

d4z

2
64

3
75 ¼ TT

3

d4x

d4y

d4z

2
64

3
75. ð12Þ
Extending this scheme to the other nodes, the state vector on the right-hand side may be written in the
local coordinate system as
s0ð1Þ ¼ TT
18sð1Þ; ð13Þ
where TT
18 is the 18 · 18 transformation matrix consisting of TT

3 blocks on the leading diagonal, but zero
elsewhere. Now pre-multiply Eq. (4) by TT

18 to give
TT
18sð1Þ ¼ TT

18Gð1Þsð0Þ; or s0 1ð Þ ¼ G0 sð0Þ; ð14Þ

where
G0 ¼ TT
18Gð1Þ. ð15Þ
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Fig. 3. Coordinates of the right-hand side of the second cell.
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Each cell within the cycle requires a transformation matrix to relate the local coordinate system with the
global, although this is not required for the eigenanalysis; the pattern is easily discerned by considering the
second cell, Fig. 3, (where a double prime notation is temporarily, and somewhat unsatisfactorily, em-
ployed) whose local right-hand side coordinates transform as
x00

y 00

z00

2
64

3
75 ¼

1 0 0

0 cos a sin a

0 � sin a cos a

2
64

3
75

x0

y0

z0

2
64

3
75 ¼

1 0 0

0 cos a sin a

0 � sin a cos a

2
64

3
75

2 x

y

z

2
64
3
75 ¼

1 0 0

0 cos 2a sin 2a

0 � sin 2a cos 2a

2
64

3
75

x

y

z

2
64
3
75

¼ T3ð2Þ
x

y

z

2
64
3
75; ð16Þ
where the index 2 denotes a rotation by angle 2a, and the transformation matrix for the first cell strictly
requires index 1. Suppose that the transfer matrix for this second cell had been calculated in global coor-
dinates according to s(2) = G(2)s(1). In the local coordinates for this cell, one has s0ð2Þ ¼ TT

18ð2Þsð2Þ, and
s0ð1Þ ¼ TT

18ð1Þsð1Þ, or s(1) = T18(1)s 0(1), since the transformation matrix is orthogonal. Pre-multiply by
TT

18ð2Þ in the above to give TT
18ð2Þsð2Þ ¼ TT

18ð2ÞGð2Þsð1Þ or s 0(2) = G 0(2)s 0(1) where G0ð2Þ ¼
TT

18ð2ÞGð2ÞT18ð1Þ.
For the nth cell, one has in global coordinates s(n) = G(n)s(n � 1); in local coordinates

s0ðnÞ ¼ TT
18ðnÞsðnÞ, s(n � 1) = T18(n � 1)s 0(n � 1). Pre-multiply by TT

18ðnÞ in the above to give
TT

18ðnÞsðnÞ ¼ TT
18ðnÞGðnÞsðn� 1Þ or s 0(n) = G 0(n)s 0(n � 1) so the transformation for the general cell is
G0ðnÞ ¼ TT
18ðnÞGðnÞT18ðn� 1Þ; ð17Þ
note that for the first cell, this reduces to Eq. (15) as T18(0) is the identity matrix.
Expressed within the local coordinates of the cell under consideration, the transfer matrix is invariant;

that is
G0 ¼ G0ð1Þ ¼ � � � ¼ G0ðnÞ � � � ¼ G0ðpÞ. ð18Þ

The transfer matrix G 0 has the property of being symplectic, as does G(1); each satisfies the relationship

GTJmG = Jm, where Jm is the metric matrix Jm ¼
0 I
�I 0

� �
, I is the identity matrix of the appropriate size,

and JT
m ¼ J�1

m ¼ �Jm. For G(1), this can be proven by direct substitution from Eq. (2), and noting that the
stiffness matrix K is symmetric. For G 0, start from the relationship G(1)TJmG(1) = Jm, and substitute from

Eq. (15) to give G0
T
TT

18JmT18G0 ¼ Jm; last, partition the transformation matrix as T18 ¼
T9 0

0 T9

� �
, and ex-

pand to find that TT
18JmT18 is equal to Jm, noting that the transpose of T9 is equal to its inverse.
4. Eigenanalysis

Since the structure, using the local coordinate system, now possesses translational symmetry, two con-
secutive state vectors are related by the scalar k as
s0ðnþ 1Þ ¼ ks0ðnÞ; ð19Þ

which, together with the transfer matrix relation, s 0(n + 1) = G 0s 0(n), immediately leads to the eigenvalue
problem
G0s0ðnÞ ¼ ks0ðnÞ. ð20Þ
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Although the transfer matrix G 0 is identical for all cells, we specifically consider the first cell, for which
the left-hand cross-section aligns with the global coordinate system; this facilitates interpretation of the ei-
gen- and principal vectors.

The eig command within MATLAB gives the eigenvalues of the transfer matrix G 0 as the three reciprocal
pairs
k1 ¼ �22.3303

k�1
1 ¼ �0.0488

� �
;

k2 ¼ �10.0110ð1þ iÞ
k�1

2 ¼ �0.0499ð1� iÞ

� �
;

�k2 ¼ �10.0110ð1� iÞ
�k
�1

2 ¼ �0.0499ð1þ iÞ

" #
; ð21Þ
which describe decay of self-equilibrated loading, and four real unity eigenvalues pertaining to rigid body
displacement in, and rigid body rotation about, the x-direction, together with tension and torsion. Also
there are eight complex unity eigenvalues of the form 4 · e±ia, in which a is the angle of pre-twist per cell,
and these relate to rigid body displacements in, and rigid body rotations about, both the y- and z-directions,
together with bending moments and shearing forces in both planes.

As with the eigenanalysis described by Stephen and Wang (1996), the eigenvectors associated with the
distinct decay eigenvalues are correctly calculated by the QR algorithm employed within MATLAB, and
these are designated v1 to v6. On the other hand, the eigenvectors describing rigid body displacements in
the x-direction, v7, and rotation about the x-axis, v9, are determined from the reduced row echelon form
(rref) of (G 0 � I), and may be written as
v7 ¼ 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0½ �T � 10�8; ð22Þ
v9 ¼ 0 Lh=2 �Hh=3 0 �Lh=2 �Hh=3 0 0 2Hh=3 0 0 0 0 0 0 0 0 0½ �T;

ð23Þ
where the angle of rotation is arbitrarily taken to be h = 5 · 10�8 rad. Two principal vectors w8 and w10 are
coupled to v7 and v9, respectively and are found using the MATLAB rref command on the augmented ma-
trix, again as described by Stephen and Wang (1996), followed by appropriate interpretation. Principal vec-
tor w8 , consists of the necessary combination of tensile force and twisting moment which, when applied to
the left- and right-hand sides of the cell, produces the unit extension defined by eigenvector v7 on the right.
Principal vector w10 consists of the necessary combination of twisting moment and tensile force which,
when applied to the left- and right-hand sides of the cell, produces the rotation defined by eigenvector v9

on the right. Two 2 · 2 Jordan blocks are associated with these vectors, which are
J
ð1Þ
2�2 ¼ J

ð2Þ
2�2 ¼

1 1

0 1

� �
. ð24Þ
A variety of strategies are possible for determination of the eigen- and principal vectors associated with
the multiple complex unity eigenvalues, 4 · e±ia . For example, two chains of equations relating eigen- and
principal vectors may be expressed as
G0 � eiaI
� �

v11 ¼ 0 G0 � e�iaI
� �

v15 ¼ 0;

G0 � eiaI
� �

w12 ¼ v11 G0 � e�iaI
� �

w16 ¼ v15;

G0 � eiaI
� �

w13 ¼ w12 G0 � e�iaI
� �

w17 ¼ w16;

G0 � eiaI
� �

w14 ¼ w13 G0 � e�iaI
� �

w18 ¼ w17.

ð25Þ
The reduced row echelon forms of the matrices (G 0 � eiaI) and (G 0 � e�iaI), respectively, yields the two
eigenvectors
v11 ¼ 0 i 1 0 i 1 0 i 1 0 0 0 0 0 0 0 0 0½ �T � 10�8; ð26Þ
v15 ¼ 0 �i 1 0 �i 1 0 �i 1 0 0 0 0 0 0 0 0 0½ �T � 10�8; ð27Þ
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which are a combination of real and imaginary rigid body displacements in the y- and z-directions. The
principal vectors w12 to w14 and w16 to w18 can then be determined by following the chains, Eqs. (25). If
one then constructs a similarity matrix V from these eigen- and principal vectors, this gives the Jordan
canonical form (JCF) at its simplest
J ¼ V�1G0V ¼

k1 0 0 0 0 0 0 0 0 0

0 k2 0 0 0 0 0 0 0 0

0 0 �k2 0 0 0 0 0 0 0

0 0 0 k�1
1 0 0 0 0 0 0

0 0 0 0 k�1
2 0 0 0 0 0

0 0 0 0 0 �k
�1

2 0 0 0 0

0 0 0 0 0 0 J
ð1Þ
2�2 0 0 0

0 0 0 0 0 0 0 J
ð2Þ
2�2 0 0

0 0 0 0 0 0 0 0 J
ð1Þ
4�4 0

0 0 0 0 0 0 0 0 0 J
ð2Þ
4�4

2
666666666666666666666664

3
777777777777777777777775

; ð28Þ
where the two 4 · 4 Jordan blocks associated with the multiple complex unity eigenvalues are
J
ð1Þ
4�4 ¼

eia 1 0 0

0 eia 1 0

0 0 eia 1

0 0 0 eia

2
6664

3
7775; J

ð2Þ
4�4 ¼

e�ia 1 0 0

0 e�ia 1 0

0 0 e�ia 1

0 0 0 e�ia

2
6664

3
7775. ð29a; bÞ
Now, while the JCF may be in its simplest form, because of the complex eigenvalues, and complex eigen-
and principal vectors, interpretation of the vectors is at its most difficult. A complex vector is not physically
permissible, but when considered in conjunction with its conjugate, the (real) displacement and force com-
ponents are the real and imaginary parts, in turn. Indeed, if one replaces the complex conjugate columns of
the similarity matrix by their real and imaginary parts, one obtains the real JCF
J ¼

k1 0 0 0 0 0 0 0 0

0 realðk2Þ �imagðk2Þ 0 0 0 0 0 0

0 imagðk2Þ realðk2Þ 0 0 0 0 0 0

0 0 0 k�1
1 0 0 0 0 0

0 0 0 0 realð�k2Þ �imagð�k2Þ 0 0 0

0 0 0 0 imagð�k2Þ realð�k2Þ 0 0 0

0 0 0 0 0 0 J
ð1Þ
2�2 0 0

0 0 0 0 0 0 0 J
ð2Þ
2�2 0

0 0 0 0 0 0 0 0 J8�8

2
6666666666666666664

3
7777777777777777775

; ð30Þ
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where
J8�8 ¼

c �s 1 0 0 0 0 0

s c 0 1 0 0 0 0

0 0 c �s 1 0 0 0

0 0 s c 0 1 0 0

0 0 0 0 c �s 1 0

0 0 0 0 s c 0 1

0 0 0 0 0 0 c �s

0 0 0 0 0 0 s c

2
66666666666664

3
77777777777775
; ð31Þ
with c ¼ cos a, s ¼ sin a; note that the single complex unity eigenvalues on the leading diagonal are replaced
by 2 · 2 real blocks. Within this formulation, the principal vectors w13 and w14 describe rigid body rotations
of the left-hand side of the cell, but employ the local y 0- and z 0-axes of the right-hand cross-section, respec-
tively. In turn, their coupled principal vectors w15, w16, w17 and w18 describe bending moment and shear
vectors applied to the left-hand side of the cell, but employ the local coordinate system of the right-hand
side of the cell. For interpretation of these vectors, it is easier if they are expressed within the local coor-
dinate system of the left-hand side, for which the local and global coordinate systems coincide. This is
achieved by employing a near diagonal Jordan decomposition in which the complex unity eigenvalue re-
places the real unity on the super diagonal; the chains then become
ðG0 � eiaIÞv11 ¼ 0; ðG0 � e�iaIÞv15 ¼ 0;

ðG0 � eiaIÞw12 ¼ eiav11; ðG0 � e�iaIÞw16 ¼ e�iav15;

ðG0 � eiaIÞw13 ¼ eiaw12; ðG0 � e�iaIÞw17 ¼ e�iaw16;

ðG0 � eiaIÞw14 ¼ eiaw13; ðG0 � e�iaIÞw18 ¼ e�iaw17.

ð32Þ
The new complex similarity matrix V comprised of these eigen- and principal vectors transforms the
transfer matrix G 0 into a new JCF, which remains broadly as in Eq. (28), but with two new 4 Æ 4 blocks,
which are
J
ð1Þ
4�4 ¼

eia eia 0 0

0 eia eia 0

0 0 eia eia

0 0 0 eia

2
6664

3
7775; J

ð2Þ
4�4 ¼

e�ia e�ia 0 0

0 e�ia e�ia 0

0 0 e�ia e�ia

0 0 0 e�ia

2
6664

3
7775. ð33Þ
Again, this leads to complex conjugate eigen- and principal vectors, and replacing these by their real and
imaginary parts, allows one to construct a new real similarity matrix which transforms G 0 into a new real
JCF, which differs from Eq. (31), in that the 8 · 8 block becomes
J8�8 ¼

c �s c �s 0 0 0 0

s c s c 0 0 0 0

0 0 c �s c �s 0 0

0 0 s c s c 0 0

0 0 0 0 c �s c �s

0 0 0 0 s c s c

0 0 0 0 0 0 c �s

0 0 0 0 0 0 s c

2
66666666666664

3
77777777777775

. ð34Þ
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This real similarity matrix V and the associated JCF are given in Appendix A. The eigen- and principal
vectors pertaining to the multiple complex unity eigenvalues are now expressed within the global coordinate
system of the left-hand cross-section. This greatly simplifies the physical interpretation of these vectors and,
in turn, determination of the equivalent continuum properties.
5. Equivalent continuum properties

5.1. Tension–torsion coupling

The two vectors v7 and w8 are coupled according to
Fig. 4.
are ex
G0w8 ¼ w8 þ v7 ð35Þ

as shown in Fig. 4, where it is seen that a tensile force and a twisting moment are applied on both hand sides
of the cell in order to produce unit extension in the x-direction, only. The two vectors v9 and w10 are cou-
pled according to
G0w10 ¼ w10 þ v9 ð36Þ

as shown in Fig. 5, where it is seen that a twisting moment and a compressive force are applied on both
sides of the cell in order to produce rotation about the x-axis, only. Following Di Prima (1959), ten-
sion–torsion coupling is expressed as
T

Mx

� �
¼

EA Ktt

Ktt GJ

� �
u=L

h=L

� �
ð37Þ
where Ktt is the coupling coefficient. From vectors w8 and v7, the quantities T, Mx and u are known (h is
zero), and the equivalent cross-sectional area and coupling coefficient are calculated as A = (0.22941 ·
0.3428)/(70 · 109 · 1 · 10�8) = 1.1234 · 10�4 m2, and Ktt = �1.8578 · 105 N m. Additionally, there is a
Poisson�s ratio effect on the cross-section; the strain in the x-direction is ex = 1 · 10�8 /0.3428 =
2.9172 · 10�8, while the strains in the y- and z-directions are ey ¼ ð�1.6883� 0.8442Þ � 10�9=
ð0.3428�

ffiffiffi
3
p

=2Þ¼�8.5306�10�9;ez¼�ð1.6214�10�9Þ=0.3428¼�8.5306�10�9 . Employing m = �ey /ex =
x z

y
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×

8.4417 10 10
×

–

1 10×
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×

–
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w8 v7

Coupling of eigenvector v7, for rigid body displacement in the x-direction, with principal vector w8 for extension: displacements
aggerated. Dotted lines show initial configuration.
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Fig. 5. Coupling of eigenvector v9 for rigid body rotation about the x-axis, with principal vector w10 for torsion.
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�ez /ex, the Poisson�s ratio is calculated as m = 0.2924. In turn, an equivalent shear modulus is found as
G = E/(2(1 + m)) = 27.081 · 109 N/m2, with Young�s modulus E being regarded as invariant.

From vectors w10 and v9, quantities T, Mx and h are known (u is zero), and Eq. (37) give the equivalent
torsion constant and coupling coefficient as J ¼ ð8.6146� 10�3 � 0.3428=

ffiffiffi
3
p
Þ= ð27.081� 109 � 5�

10�8Þ ¼ 1.2949� 10�6 m4, and Ktt = �1.8578 · 105 Nm, respectively; the latter is identical to that found
from vectors w8 and v7, as one would expect from the reciprocal theorem.

5.2. Rigid body rotations

The two principal vectors w13 and w14 are coupled to the rigid body displacement eigenvectors v11 and v12

according to the scheme
G0w13 ¼ v11 cos aþ v12 sin aþ w13 cos aþ w14 sin a;

G0w14 ¼ �v11 sin aþ v12 cos a� w13 sin aþ w14 cos a.
ð38a; bÞ
Vectors w13 and w14 describe rigid body rotations of the left-hand cross-section about the z- and y-axes,
respectively, within the global coordinate system. Pre-multiplication of these vectors by the transfer matrix
G 0 will give rigid body rotations of the right-hand side about the local z 0- and y 0-axes, respectively, as indi-
cated by Eq. (14). However interpretation of these vectors is easier when these right-hand rotations are ex-
pressed within the global coordinate system, which is achieved by pre-multiplication by G, according to
w13R ¼ Gw13;w14R ¼ Gw14 ð39Þ

where G is the transfer matrix defined within the global coordinate system for this first cell, and the addi-
tional subscript R denotes the right-hand side vector; these vectors are shown in Fig. 6.

5.3. Bending moments

Principal vectors w15 and w16 describe the bending moments on the left-hand side of the cell in the xy-
and xz-planes, respectively, within the global coordinate system, and are coupled to the rotations according
to
G0w15 ¼ w13 cos aþ w14 sin aþ w15 cos aþ w16 sin a;

G0w16 ¼ �w13 sin aþ w14 cos a� w15 sin aþ w16 cos a.
ð40a; bÞ
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Again, pre-multiplication by G 0 would give the two bending moment vectors on the right-hand side of
the cell in the local x 0y 0- and x 0z 0-planes, and for interpretation of the vectors, it is preferable that these
right-hand vectors be expressed within the global coordinate system, which is achieved by pre-multiplica-
tion by G, to give
w15R ¼ Gw15; w16R ¼ Gw16. ð41Þ

Analysis of the x-direction displacement components of the left-hand cross-section within vectors w15 and

w16, shows that both are comprised of two rotations about the y- and z-axes, and can be decomposed as
d1x

d2x

d3x

2
64

3
75

w15

¼ a�
d1x

d2x

d3x

2
64

3
75

w13

þ b�
d1x

d2x

d3x

2
64

3
75

w4

;

d1x

d2x

d3x

2
64

3
75

w16

¼ c�
d1x

d2x

d3x

2
64

3
75

w14

þ d �
d1x

d2x

d3x

2
64

3
75

w13

. ð42a; bÞ
Similar analysis of these components within the right-hand side vectors w15R and w16R, shows that they
are also comprised of two rotations about the y- and z-axes, and can be decomposed as
d4x

d5x

d6x

2
64

3
75

w15R

¼ e�
d4x

d5x

d6x

2
64

3
75

w13R

þ f �
d4x

d5x

d6x

2
64

3
75

w14R

;

d4x

d5x

d6x

2
64

3
75

w16R

¼ g �
d4x

d5x

d6x

2
64

3
75

w14R

þ h�
d4x

d5x

d6x

2
64

3
75

w13R

.

ð43a; bÞ

Simple calculations from Eqs. (42) and (43) give a = �0.5, b = 0.2109, c = �0.5 and d = �0.2109, for the

left-hand side, and e = 0.5, f = 0.2109, g = 0.5 and h = �0.2109 for the right; the fact that coefficients a and
e are equal but of opposite sign indicates a curvature of the cell, while the equality of coefficients b and f

indicates a shear deformation of the cell, as shown in Figs. 7 and 8. From Figs. 7(a) and 8(a), the two bend-
ing curvatures in the xy- and xz-planes, respectively, are
1

Ry
¼ owz

ox
¼ 1.4434� 10�9

�
H
3
� L

2

� 	
¼ 8.5098� 10�8 m�1;

1

Rz
¼

owy

ox
¼ 2.5� 10�9

�
L
2
� L

2

� 	
¼ 8.5098� 10�8 m�1;

ð44a; bÞ
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while consideration of Figs. 7(b) and 8(b) gives the two coupled shear angles in the xz- and xy-planes,
respectively, as
cxz ¼ 1.0546� 10�9=ðL=2Þ ¼ 6.1527� 10�9;

cxy ¼ 6.0886� 10�10=6.0886� 10�10=ðH=2Þ ¼ 6.1527� 10�9. ð45a; bÞ
The above indicates that a bending moment produces a curvature in the plane of bending, together with a
shear deformation in the perpendicular plane, and is consistent with the bending theory of pre-twisted
beams presented by Tabarrok and Xiong (1989). It should be noted that the bending moment vectors also
contain self-equilibrating nodal forces in the y- and z-directions, although these are not shown in Figs. 7
and 8, which implies that the resultant nodal force is not in the axial direction. Such additional compo-
nents of force are not required from consideration of force or moment equilibrium, but rather from nodal
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displacement compatibility requirements of adjacent cells. In contrast to many theories of pre-twisted
beams, there is no evidence of bending–bending coupling, that is, curvature in two perpendicular planes
produced by the moment.

5.4. Shearing forces

Principal vectors w17 and w18 are coupled to the bending moments on the left-hand side of the cell,
according to
G0w17 ¼ w15 cos aþ w16 sin aþ w17 cos aþ w18 sin a;

G0w18 ¼ �w15 sin aþ w16 cos a� w17 sin aþ w18 cos a.
ð46a; bÞ
Previous experience from the eigenanalysis of a straight repetitive structure suggests that these two vec-
tors should describe shear; however analysis of the force components within vectors w17 and w18 gives a
resultant shear force Qy, and moments Mz, My for the former, and a resultant shear force Qz, and moments
My, Mz for the latter. In fact, only Qy and Mz, and Qz and My are required to define the simplest left-hand
shear vectors in the xy- and xz-planes, respectively, such that one should have a shearing force only on the
right-hand side of the cell, and the unnecessary bending moments are removed according to the scheme
w�17 ¼ w17 �
resultantðMyÞ within w17

resultantðMyÞ within w16

� w16;

w�18 ¼ w17 �
resultantðMzÞ within w18

resultantðMzÞ within w15

� w15.

ð47a; bÞ
The two new shear vectors w�17 and w�18 are given in Appendix B. Again, it is preferable that the shear
vectors on the right-hand side of the cell should be given within the global coordinate system, and these
are determined by
w�17R ¼ Gw�17; w�18R ¼ Gw�18; ð48Þ

these describe the shear vectors in the xy- and xz-planes on both sides of the single cell, in global coordi-
nates, in their simplest forms.

Again, consideration of the x-direction displacement components in the left-hand side vectors w�17 and
w�18 shows that they can be decomposed into rotations about the y- and z-axes, as
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; ð49a; bÞ
while, consideration of these components in the right-hand side vectors w�17R and w�18R shows that they are
also comprised of rotations about the y- and z-axes, as
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ð50a; bÞ

Again, simple calculations from Eqs. (49) and (50) gives a = 1.1678, b = 0.0307, c = 1.1678 and

d = �0.0307 on the left-hand side, and e = 0.6678, f = �0.2416, g = 0.6678 and h = 0.2416 on the right.
These shear vectors w�17 and w�17R, and w�18 and w�18R are shown in Figs. 9 and 10, respectively; the x-direction
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displacement components within the vectors can be further decomposed, as illustrated in Figs. 11–14, which
indicate the intricacy of the coupling.

The combination of shearing force and bending moment described by vector w�17, Fig. 9, may be re-
garded as producing the primary deformations of a shear angle and a curvature in the xy-plane, Fig. 11;
this is the expected behaviour of a straight beam. Coupled to these are secondary deformations of a cur-
vature, Fig. 12(a), and a shear angle, Fig. 12(b), in the xz-plane. One would expect the former by virtue
of the reciprocal theorem: in vector w16 one has the primary response of a curvature in the xz-plane,
and the coupled secondary response of a shear angle in the xy-plane. On the other hand, the secondary
shear angle in the xz-plane may be regarded as a repeat of the curvature-shear coupling exhibited in the
bending moment vector w15, as the shear vector contains a bending moment. Indeed, as will be seen, these
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are exactly one half of those associated with w15, as one might expect: for a continuum, a shearing force
induces a bending moment which varies linearly along the length, whose effect should be one-half that
of a pure moment, the latter being constant along the length of the cell. These secondary effects become
evident within a cell of finite length, but are not included within the coupled constitutive relationships, such
as Eq. (57), which is applicable to a continuum element of infinitesimal length.

From Figs. 11(a) and 13(a), the cross-sectional rotation on either end of the cell in the two planes, as
wz ¼
2.6496� 10�9

H=3
¼ 2.6775� 10�8; wy ¼

4.5892� 10�9

L=2
¼ 2.6775� 10�8. ð51a; bÞ
Moreover, the y- and z-direction displacements within vectors w�17 and w�17R, and w�18 and w�18R suggests a
shift of the centre of area on the left-hand side of the cell for both, as shown in Figs. 15 and 16, respectively.
The centre line slope rotations within the two shear vectors can then be determined as
ov
ox
¼ 7.1807� 10�10

0.3428
¼ 2.0947� 10�9;

ow
ox
¼ 7.1807� 10�10

0.3428
¼ 2.0947� 10�9; ð52a; bÞ
so the shear angles in the two planes are
cxy ¼ wz � ov=ox ¼ 2.4680� 10�8; cxz ¼ wy � ow=ox ¼ 2.4680� 10�8. ð53a; bÞ
From the above discussion on the bending moment vectors, it is known that a pure bending moment
produces a bending curvature in the principal plane and a coupled shear deformation in the perpendicular
plane. According to the reciprocal theorem, when the cell is subject to a shear, it should result in a shear
deformation in the principal plane, coupled with a bending curvature in the perpendicular plane; from Figs.
12(a) and 14(a), these two coupled bending curvatures are, respectively
1

Rz
¼ 6.8056� 10�10

L=2� L=2
¼ 2.3166� 10�8 m�1;

1

Ry
¼ 3.9292� 10�10

H=3� L=2
¼ 2.3166� 10�8 m�1. ð54a; bÞ
The secondary bending curvatures produced by the bending moments Mz and My applied on the left-
hand side of the cell, vectors w�17 and w�18, but regarded as being linearly distributed along the cell from
the left-side to the right which, from Figs. 11(b) and 13(b), are
1

R0y
¼ 7.2169� 10�10

H=3� L=2
¼ 4.2549� 10�8 m�1;

1

R0z
¼ 1.25� 10�9

L=2� L=2
¼ 4.2549� 10�8 m�1. ð55a; bÞ
From Figs. 12(b) and 14(b), the secondary coupled shear angles due to these bending moments in the
perpendicular planes are
c0xy ¼
5.2729� 10�9

L=2
¼ 3.0764� 10�9; c0xz ¼

3.0443� 10�10

H=3
¼ 3.0764� 10�9. ð56a; bÞ
As presaged above, the bending curvatures and shear angles obtained in Eqs. (55) and (56) are exactly
one-half of those obtained in Eqs. (44) and (45), respectively.

The absence of bending–bending coupling for the example structure suggests that any proposed equiv-
alent continuum coupling involving bending and shear will not be typical of a pre-twisted structure; indeed,
the coupling appears to be closer to that of an asymmetric structure based upon a NASA deployable frame-
work treated by Stephen and Zhang (2004), according to
Qz

Mz

� �
¼

jxzAG Kxz

Kxz EIz

� �
cxz

owz=ox

� �
; ð57Þ
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with an equivalent expression for bending in the perpendicular plane. In order to determine the equiva-
lent second moment of area and shear coefficient, it is more convenient to write Eq. (57) in its inverted
form
cxz

1=Ry

� �
¼ N

Qz

Mz

� �
. ð58Þ
where N is the compliance matrix
N ¼
n11 n12

n21 n22

� �
¼

jxzAG Kxz

Kxz EIz

� ��1

. ð59Þ
From the bending vector in the xy-plane, w15, one has Mz = 9.9185 · 10�3 Nm, Qz = 0,
1/Ry = 8.5098 · 10�8 m�1, cxz = 6.1527 · 10�9, and substituting into Eq. (59) gives
n12 ¼
cxz

Mz
¼ 6.2033� 10�7; n22 ¼

1=Ry

Mz
¼ 8.5797� 10�6. ð60a; bÞ
From the shear vector in the xz-plane w�18, one has Mz = 0 Nm, Qz = 2.8934 · 10�2 N,
1/Ry = 2.3166 · 10�8 m�1, cxz = 2.4680 · 10�8, and from Eq. (59)
n11 ¼
cxz

Qz

¼ 8.5298� 10�7; n21 ¼
1=Ry

Qz

¼ 8.0064� 10�7. ð61a; bÞ
Inversion of the matrix N gives
jxzAG Kxz

Kxz EIz

� �
¼

n11 n12

n21 n22

� ��1

¼ 1.2577� 106 �9.0935� 104

�1.1737� 105 1.2504� 105

" #
; ð62Þ
from which the equivalent second moment of area is Iz = 1.7863 · 10�6 m4, and shear coefficient
jxz = 0.4134. However, Eqs. (60) and (61) indicate unequal coupling coefficients since n125n21. Therefore,
the coupled equations are modified, to read
Qz

Mz

� �
¼

jxzAG Kxz

Kzx EIz

� �
cxz

owz=ox

� �
; ð63Þ
and the two coupling coefficients are Kxz = �9.0935 · 104 Nm, Kzx = �1.1737 · 105 Nm.
Similarly, from the bending vector in the xz-plane, w16, and the shear vector in the xy-plane, w�17, it is

found that jxy = jxz, Iy = Iz, Kxy = Kxz and Kyx = Kzx, within the coupled equations
Qy

My

� �
¼

jxyAG Kxy

Kyx EIy

� �
cxy

owy=ox

" #
; ð64Þ
equality of these properties was expected given the equilateral triangular cross-section of the example struc-
ture. However, the asymmetry of coupling within these stiffness matrices is contrary to the reciprocal the-
orem, and may imply that the coupled bending-shear model employed is inadequate for this particular
structure, although other interpretations are possible. First, note that the cross-sectional displacements,
that is, rotation and shear, are based on the three nodal axial displacements on both sides of the cell,
and that it is always possible for a plane to pass through three given points; thus it is entirely possible,
at least for this triangular cross-section, for a possible cross-sectional warping to be misinterpreted as a
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rotation. This could be confirmed, or discounted, by the analysis of a pre-twisted structure having, say, a
rectangular cross-section, and will be investigated in further work. Another possibility is a lack of work-
conjugacy in relation to moments and rotations, which according to Ritto-Correa and Camotim (2003)
is known to lead to asymmetric tangent matrices in large displacement, small strain analysis. It is also quite
possible that the particular way of presenting the moment-shear coupling needs modification for a pre-
twisted structure: thus when one calculates the nodal stiffness matrix K, in global coordinates, which is
the first step of the analysis procedure, one is relating nodal force and displacement components on both

sides of the cell. However, in writing constitutive relationships such as those expressed in Eq. (57), moment
and shearing force are only explicitly stated for the left-hand side of the cell, consistent with an infinitesimal
element, while those on the right-hand are understood; likewise, curvature and shear are interpreted from
the rotation of the cross-section on both sides of the cell. For a straight structure this is quite acceptable—
for example, moment equilibrium would require that there is an equal but opposite moment on the right-
hand side, while cross-sectional rotations are always expressed within a global coordinate system. For the
pre-twisted cell, the implied right-hand side moment is only equal and opposite within the global coordinate
system, not the local. A further difficulty lies with the cross-sectional rotation, as finite rotations about dif-
ferent axes are known not to commute; this problem does not arise in the case of tension–torsion coupling,
since the cross-sectional rotation (deformation) does commute with angle of pre-twist, as they are both
about the same axis.

The inability to resolve this issue highlights the need for further research in the general area of bending of
pre-twisted structures—both for the idealised discrete structure considered here, and for continuum rods, as
in a pre-twisted turbine blade. However, one should emphasise that this issue represents a weakness in
interpretation and current understanding, not an error in the principal vectors obtained by the eigenanal-
ysis described in this paper—these must be correct, otherwise one would not obtain the correct Jordan
canonical form.
6. Conclusions

Through introduction of a local coordinate system rotating with the cross-section—equivalent to the ap-
proach adopted in most, if not all, of the Theory of Elasticity approaches to the analysis of pre-twisted con-
tinuum beams or rods—the transfer matrix of each cell of a pre-twisted structure becomes identical; one
then has translational symmetry, allowing eigenanalysis. Non-unity eigenvalues describe the rates of decay
of self-equilibrated end loading, as anticipated by Saint-Venant�s principle. Eigen- and principal vectors
associated with the multiple real unity eigenvalues pertain to tension–torsion coupling, and equivalent con-
tinuum properties are determined; coupling is symmetric as one would expect from the reciprocal theorem.
Interpretation of these vectors is simple, as a torsional deformation will commute with the angle of pre-
twist. A variety of real and imaginary Jordan block forms are possible for the multiple complex unity eigen-
values, and these are discussed in some detail. Interpretation of the associated vectors is more difficult, even
when presented in their simplest real forms; a pure bending moment produces a curvature in the plane of
bending together with a shear in the perpendicular plane. In all likelihood, the choice of an example struc-
ture having equilateral triangular cross-section, and hence equal equivalent second moments of area, is
responsible for the absence of bending–bending coupling; future extension of the approach to a rectangular
cross-section should confirm such coupling, and would also allow investigation of cross-sectional warping.
Interpretation of the shear vectors is the most difficult—a shearing force induces a linearly varying bending
moment, cross-sectional rotations do not commute with the angle of pre-twist—and the asymmetry of cou-
pling coefficients between bending and shear suggests that the model employed may be inadequate. On the
other hand, asymmetric stiffness matrices are known to occur.
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Appendix A. Transformation matrix and Jordan canonical form

�8 �8 �8 �8 �8 �8
2 3
V ¼

�2.6441� 10 �5.9282� 10 �1.6709� 10 �1.5171� 10 5.9694� 10 �2.6441� 10

�7.8780� 10�8 �2.2359� 10�7 �1.3240� 10�7 8.6401� 10�8 1.3240� 10�7 1.5472� 10�8

�6.3349� 10�8 �4.6575� 10�8 8.6401� 10�8 4.6575� 10�8 �2.2359� 10�7 9.9900� 10�8

�2.6441� 10�8 1.5171� 10�8 5.9694� 10�8 5.9282� 10�8 �1.6709� 10�8 �2.6441� 10�8

�1.5472� 10�8 8.6410� 10�8 �1.3240� 10�7 �2.2359� 10�7 1.3240� 10�7 7.8782� 10�8

9.9900� 10�8 �4.6575� 10�8 �2.2359� 10�7 4.6575� 10�8 8.6401� 10�8 �6.3349� 10�8

�2.6441� 10�8 4.4111� 10�8 �4.2986� 10�8 �4.4111� 10�8 �4.2986� 10�8 �2.6441� 10�8

9.4252� 10�8 �6.8595� 10�8 1.3606� 10�7 �6.8595� 10�8 �1.3606� 10�7 �9.4252� 10�8

�3.6650� 10�8 2.2189� 10�7 �6.8595� 10�8 �2.2189� 10�7 �6.8595� 10�8 �3.6550� 10�8

0 0 0 0 0 0

�1=2 �
ffiffiffi
3
p

=2 �1=2 �
ffiffiffi
3
p

=2 �1=2 �1=2

�
ffiffiffi
3
p

=2 �1=2
ffiffiffi
3
p

=2 �1=2
ffiffiffi
3
p

=2 �
ffiffiffi
3
p

=2

0 0 0 0 0 0

�1=2
ffiffiffi
3
p

=2 �1=2
ffiffiffi
3
p

=2 �1=2 �1=2ffiffiffi
3
p

=2 �1=2 �
ffiffiffi
3
p

=2 �1=2 �
ffiffiffi
3
p

=2
ffiffiffi
3
p

=2

0 0 0 0 0 0

1 0 1 0 1 1

0 1 0 1 0 0

1� 10�8 0 0 0 0 0

0 8.4417� 10�10 8.57� 10�8 3.8019� 10�11 1� 10�8 0

0 1.4621� 10�9 �4.9479� 10�8 6.5851� 10�11 0 1� 10�8

1� 10�8 0 0 0 0 0

0 8.4417� 10�10 �8.57� 10�8 3.8019� 10�11 1� 10�8 0

0 �1.4621� 10�9 �4.9479� 10�8 �6.5851� 10�11 0 1� 10�8

1� 10�8 0 0 0 0 0

0 �1.6883� 10�9 0 �7.6039� 10�11 1� 10�8 0

0 0 9.8958� 10�8 0 0 1� 10�8

0 7.6469� 10�2 0 �9.0323� 10�3 0 0

0 �7.9046� 10�3 0 7.4604� 10�3 0 0

0 4.5637� 10�3 0 �4.3073� 10�3 0 0

0 7.6469� 10�2 0 �9.0323� 10�3 0 0

0 7.9046� 10�3 0 �7.4604� 10�3 0 0

0 4.5637� 10�3 0 �4.3073� 10�3 0 0

0 7.6469� 10�2 0 �9.0323� 10�3 0 0

0 0 0 0 0 0

0 �9.1274� 10�3 0 8.6146� 10�3 0 0

2.8868� 10�9 5� 10�9 �3.8880� 10�10 �3.1089� 10�9 2.0225� 10�9 5.9385� 10�9

0 0 3.5904� 10�10 6.2187� 10�10 �6.3152� 10�10 �4.6455� 10�10

0 0 6.2187� 10�10 1.0771� 10�9 �1.0938� 10�9 �8.0462� 10�10

2.8868� 10�9 �5� 10�9 �2.4980� 10�9 1.8911� 10�9 4.1317� 10�9 �4.7208� 10�9

0 0 3.5904� 10�10 �6.2187� 10�10 �8.6547� 10�11 7.7919� 10�10

0 0 �6.2187� 10�10 1.0771� 10�9 1.4990� 10�10 �1.3496� 10�9

�5.7735� 10�9 0 2.8868� 10�9 1.2177� 10�9 �6.1542� 10�9 �1.2177� 10�9

0 0 1.4361� 10�9 0 �1.4361� 10�9 6.2928� 10�10

0 0 0 0 0 0

0 0 1.6705� 10�2 2.8934� 10�2 �2.7259� 10�3 �3.7005� 10�2

0 0 �3.5656� 10�3 �2.0586� 10�3 �5.9174� 10�3 1.7786� 10�3

0 0 �2.0586� 10�3 3.5656� 10�3 1.7787� 10�3 �1.3372� 10�2

0 0 1.6705� 10�2 �2.8934� 10�2 �3.0684� 10�2 2.0863� 10�2

0 0 3.5656� 10�3 �2.0586� 10�3 �1.3049� 10�2 2.3385� 10�3

0 0 �2.0586� 10�3 �3.5656� 10�3 2.3385� 10�3 �6.2406� 10�3

0 0 �3.3410� 10�2 0 3.3410� 10�2 1.6142� 10�2

0 0 0 4.1142� 10�3 �9.9678� 10�3 �4.1172� 10�3

0 0 4.1172� 10�3 0 �4.1172� 10�3 �9.3213� 10�3

666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

;
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V�1G 0V = J, where J is the real Jordan block matrix.
J ¼

�22.3303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �10.0110 �10.0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 10.0110 �10.0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �0.0499 �0.0499 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.0499 �0.0499 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 �0.0448 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 c �s c �s 0 0 0 0

0 0 0 0 0 0 0 0 0 0 s c s c 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c �s c �s 0 0

0 0 0 0 0 0 0 0 0 0 0 0 s c s c 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c �s c �s

0 0 0 0 0 0 0 0 0 0 0 0 0 0 s c s c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c �s

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s c

2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

;

where c ¼ cos a, s ¼ sin a and a = p/8.
Appendix B. Two shear vectors

�9 �9
2 3
½w�17 w�18 � ¼

3.5245� 10 5.7507� 10

�9.3197� 10�10 �2.9108� 10�10

�1.6142� 10�9 �5.0417� 10�10

3.2180� 10�9 �5.9277� 10�9

2.1390� 10�10 9.5265� 10�10

�3.7049� 10�10 �1.6500� 10�9

�6.7425� 10�9 1.7698� 10�9

�1.4361� 10�9 1.3231� 10�10

0 0

�1.6705� 10�3 �2.8934� 10�2

�4.9228� 10�3 5.5975� 10�5

5.5975� 10�5 �1.4366� 10�2

�1.6705� 10�2 2.8934� 10�2

�1.2054� 10�2 4.0612� 10�3

4.0612� 10�3 �7.2352� 10�3

3.3410� 10�2 0

�1.1957� 10�2 �4.1172� 10�3

�4.1172� 10�3 �7.3322� 10�3

6666666666666666666666666666666666664
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